48160-Richardson, Timothy

Timothy Richardson, PhD

Senior Research Professor of Medicine

Email
timorich@iu.edu
Phone
(317) 274-2730
Address
L3 210
CPHR
IN
Indianapolis, IN
PubMed:

Bio

Timothy Richardson, PhD, has 25 years of experience in the fields of medicinal chemistry, pharmacology and drug discovery. He joined the Indiana University School of Medicine in early 2020 as a Senior Research Professor of Medicine in the Division of Clinical Pharmacology.

 

Before joining IUSM, Dr. Richardson was a Research Fellow at Lilly Research Laboratories, where he made substantial contributions to drug discovery programs that delivered clinical candidates for endocrine, musculoskeletal, and autoimmune diseases. He led technology platform teams focused on Gene Regulation, Epigenetics, and Nuclear Receptors. He also served as a Group Leader in Discovery Chemistry, helping to build a portfolio of small molecule clinical candidates for the Immunology Therapeutic Area. Dr. Richardson finished his career at Lilly as a founding member of the RNA Therapeutics Team facilitating the establishment of internal capabilities as well as an external ecosystem of partnerships, capabilities, and assets for oligonucleotide-based medicines.

 

Dr. Richardson leads the IUSM-Purdue TREAT-AD Center, an academic drug discovery center funded by the National Institute for Aging with the goal of diversifying and reinvigorating the Alzheimer’s disease (AD) drug development pipeline. The Center is developing high-quality research tools and drug-like molecules to validate and advance the next generation of drug targets for the treatment of AD. Current efforts are focused on the neuroinflammatory components of neurodegeneration driven by microglia, the non-neuronal, macrophage-like cells that serve as resident immune cells in the brain. We have discovered potent and selective inhibitors of SHIP1, a phosphatidylinositol phosphatase that plays a key role regulating pathways downstream from TREM2 and the Fcγ receptor FCγRIIB. We are also developing activators of PLCG2, a phospholipase involved in TREM2 and Fcγ receptor mediated signaling. Our hypothesis is that inhibition of SHIP1 or activation of PLCG2 early in disease will increase microglial protective functions and result in a reduced rate of disease progression and cognitive decline in AD patients. 

Key Publications

Jesudason, C. D.; Mason, E. R.; Chu, S.; Oblak, A. L.; Javens-Wolfe, J.; Moussaif, M.; Durst, G.; Hipskind, P.; Beck, D. E.; Dong, J.; Amarasinghe, O.; Zhang, Z.; Hamdani, A. K.; Singhal, K.; Mesecar, A. D.; Souza, S.; Jacobson, M.; Salvo, J. D.; Soni, D. M.; Kandasamy, M.; Masters, A. R.; Quinney, S. K.; Doolen, S.; Huhe, H.; Rizzo, S. J. S.; Lamb, B. T.; Palkowitz, A. D.; Richardson, T. I. SHIP1 Therapeutic Target Enablement: Identification and Evaluation of Inhibitors for the Treatment of Late-onset Alzheimer’s Disease. Alzheimer’s Dement.: Transl. Res. Clin. Interv. 2023, 9 (4), e12429.

Ahat, E.; Shi, Z.; Chu, S.; Bui, H. H.; Mason, E. R.; Soni, D. M.; Roth, K. D.; Chalmers, M. J.; Oblak, A. L.; Zhang, J.; Gutierrez, J. A.; Richardson, T. SHIP1 Modulation and Proteome Characterization of Microglia. J. Proteom. 2024, 105198.

Potjewyd FM, Annor-Gyamfi JK, Guduru SKR, Nwogbo F, Rogers DA, Hopkins MD, et al. Generation of the AD Informer Set: Chemical tools to facilitate Alzheimer’s disease drug discovery. Alzheimer’s Dementia 2021;17: https://doi.org/10.1002/alz.051113. 

Lugar CW, Clarke CA, Morphy R, Rudyk H, Sapmaz S, Stites RE, et al. Defining Target Engagement Required for Efficacy In Vivo at the Retinoic Acid Receptor-Related Orphan Receptor C2 (RORγt). J Med Chem 2021;64:5470–84. https://doi.org/10.1021/acs.jmedchem.0c01918.

Looking for patient care?

To schedule an appointment with a faculty member physician of IU School of Medicine, contact Indiana University Health at 888-484-3258 or use the physician finder by clicking the button below.