17798-Hudmon, Andy
Faculty

Andy Hudmon, PhD

Adjunct Associate Professor of Pharmacology & Toxicology

Address
320 W. 15th Street
Neuroscience Research, Room NB 400E

Indianapolis, IN 46202

Bio

I hold a BS degree in Marine Biology and an MS degree in Interdepartmental Physiology, both conferred by Auburn University. My PhD training occurred under the mentorship of Dr. Neal Waxham at The University of Texas Health Sciences Center in Houston, where I studied CaMKII structure-function. Subsequent to this training, I was a post-doctoral fellow in the laboratory of Dr. Howard Schulman in the Department of Neurobiology at Stanford University, where I studied L-type voltage gated channel regulation by calcium signaling as well as CaMKII autoregulation during normal and aberrant calcium signaling. My first appointment was at Yale University in the Department of Neurology as a Research Associate with Dr. Stephen Waxman, and in 2006, I accepted a tenure-track position as an Assistant Professor at the Indiana University School of Medicine. I was granted tenure and advanced to Associate Professor in 2012.

My laboratory studies normal and aberrant calcium (Ca2+) signaling; as this second messenger regulates diverse functions ranging from fertilization and cell death to contraction and secretion. In the nervous system, neuronal communication requires Ca2+ signaling, as does the regulation of the strength and specificity of neuronal connections. Ca2+ alters cell function by altering the biological activity of proteins. This process may involve a direct affect through Ca2+ altering a protein's conformation as well indirect affects through the activation of enzymes. Primarily we study how multifunctional protein kinases, kinases that phosphorylate numerous substrates throughout the cell, modulate excitable cell activity like neurons and myocytes. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a critical mediator of synaptic plasticity and best known as a "cognitive kinase" due to its role in learning and memory and "machine-like" behavior in decoding Ca2+ signals. My current research interests are in the fields of molecular and cellular neuroscience, with a strong focus on Ca2+ signaling transducers and effectors within the nervous system. Specifically, my studies focus on protein kinases and their downstream targets, including ion channels and other proteins implicated in synaptic plasticity, excitotoxic neurodegeneration, and neuropathic pain

The secondary goal of my laboratory is to elucidate how protein kinases function as specialized molecular machines and assemble with their substrates and regulators to form signaling modules. In doing so, we combine traditional biochemical and biophysical techniques in conjunction with fluorescent imaging approaches to understand how kinases and their substrates contribute to regulating neuronal and myocyte excitability.

Titles & Appointments

  • Adjunct Associate Professor of Pharmacology & Toxicology
  • Education
    1997 PhD University of Texas
    1991 MS Auburn University
    1988 BS Auburn University
  • Research

    Ranging from fertilization and cell death to contraction and secretion, transient increases in intracellular calcium (Ca2+) levels regulate fundamental biological processes throughout the body. In the nervous system, neuronal communication requires Ca2+ signaling, as does the regulation of the strength and specificity of neuronal connections. Ca2+ alters cell function by altering the biological activity of proteins. This process may involve a direct affect through Ca2+ altering a protein’s conformation as well indirect affects through the activation of kinases and phosphorylation. Understanding the mechanisms by which protein kinases and Ca2+ binding proteins translate Ca2+ signals into specific changes in cell function is the focus of my laboratory.

    My current research efforts are concentrated on two Ser/Thr protein kinases: 1) a Ca2+/calmodulin activated protein kinase (CaMKII) essential to synaptic plasticity and 2) mitogen-activated protein kinases (MAP kinases), which are activated by cell stress and growth factors to regulate pain, synaptic plasticity, and addiction. Although CaMKII is found throughout the body, it’s best known as a “cognitive kinase” due to its role in learning and memory and “machine-like” behavior in decoding Ca2+ signals. MAP kinases are downstream effectors of multiple kinases, including CaMKII. MAP kinase activity may produce long-term changes in cell function by changes in gene transcription. Thus, the universal role of CaMKII in Ca2+ signal transduction as well the potential for MAP kinases to remodel long-term changes in cell function, make these kinases, as well as their regulators and substrates, important therapeutic targets for a number of important diseases throughout the body, ranging from heart disease and diabetes to addiction and cerebral ischemia.

    The primary goal of my laboratory is to elucidate how protein kinases function as specialized molecular machines and assemble with their substrates and regulators to form signaling modules. In doing so, we combine traditional biochemical and biophysical techniques in conjunction with fluorescent imaging approaches to characterize kinases and their substrates in vitro and in living cells. The long-term goals of our research efforts are to identify novel protein interactions and regulatory mechanisms that underlie synaptic function and plasticity in the nervous system.

Looking for patient care?

To schedule an appointment with a faculty member physician of IU School of Medicine, contact Indiana University Health at 888-484-3258 or use the physician finder by clicking the button below.

Find a doctor