14603-Bishop, Derron
Faculty

Derron L. Bishop, PhD

Associate Dean, IUSM Muncie

Phone 765-751-5101
Address
221 N Celia Ave, MT 201


Muncie, IN 47303
Pubmed Logo

Bio

Microscopy in 3D is a video about Dr. Bishop's research created by students in the Ball State University Telecommunication Department as a class assignment for Professor James Shasky.
Low Bandwidth Version | High Bandwidth Version

My lab is interested in understanding mechanisms responsible for changes in synaptic connectivity in the nervous system. We study synaptic rearrangements at a model synapse, the neuromuscular junction between motoneurons and muscle fibers, due to its large size, experimental accessibility, and ease of manipulation. Our basic approach is to image synapses from transgenic mice expressing variants of green fluorescent protein (GFP) in their motoneurons using confocal and fluorescent microscopy. We target these same synapses for a much more highly resolved serial electron microscopic reconstruction so that we can directly attribute subcellular alterations revealed by electron microscopy to more macroscopic observations made by light microscopy.

Working in the LabWe are currently using this correlated three-dimensional confocal and electron microscopy for two projects. First, we are investigating a natural process during early development of the nervous system where motoneurons become permanently disconnected from the muscle fibers they initially innervate. At birth, almost every mammalian muscle fiber is innervated by more than one axon. During the next several weeks, all but one axon is lost so that each muscle fiber is innervated by only a single axon into maturity. Since similar processes occur throughout the developing nervous system, we seek to understand the mechanisms involved in sharpening neural connections.

 A second area of focus involves understanding cellular mechanisms of synapse and motoneuron loss in a mouse model of amyotrophic lateral sclerosis (ALS or Lou Gherig's Disease). ALS is a disease characterized by degeneration of the upper and lower motoneurons that control movement. The protracted loss of motoneurons results in terminal paralysis for which there is currently no cure.  synapse high resolution imaging

Fortunately, our ability to elucidate the mechanisms of the pathogenesis of ALS has been facilitated by the discovery that a mutant human superoxide dismutase 1 (SOD1) gene found in a subset of human patients with familial amyotrophic lateral sclerosis (fALS) can cause motoneuron degeneration similar to that in humans when expressed in mice. Using several different fluorescent labeling strategies, we have been applying our high resolution imaging techniques to image synapse and motoneuron loss in these transgenic mice in an attempt to understand the subcellular changes that cause or accompany nerve degeneration seen in ALS. 

Titles & Appointments

  • Associate Dean, IUSM Muncie
  • Director, IUSM Muncie
  • Associate Professor of Anatomy, Cell Biology & Physiology
  • Education
    2001 PhD Washington University
    1995 MS Ball State University
    1993 BA North Central College
  • Research

    Weaver SA, Knecht SM, Riegle M, Bishop DL, Pederson BA (2013) Induction of severe hypoglycemia and measurement of neuronal cell death in mouse. JOVE in press 

    Bishop D, Nikic I, Brinkoetter M, Knecht S, Potz S, Kerschensteiner M, Misgeld T (2011) Nearinfrared branding efficiently correlates light and electron microscopy. Nature Methods 8(7):568-70.  

     Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Brück W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis.Nature Medicine17(4):495-9.

     Di Maio A, Skuba A, Himes BT, Bhagat SL, Hyun JK, Tessler A, Bishop D, Son YJ (2011) In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. Journal of Neuroscience 31(12):4569-82.

     Horn MP, Knecht SM, Birdsong JA, Gammon KP, McKillip J, Bishop DL, and McDowell SA. (2008) Simvastatin inhibits endothelial cell invasion by Staphylococcus aureus through depletion of isoprenoid intermediates. Journal of Pharmacology and Experimental Therapeutics. 326(1):135-43.

    Horn MP, Knecht SM, Rushing FL, Birdsong J, Siddall CP, Johnson CM, Abraham TN, Brown A, Volk CB, Gammon K, Bishop DL, McKillip JL, McDowell SA. (2008) Simvastatin inhibits Staphylococcus aureus host cell invasion through modulation of isoprenoid intermediates. J Pharmacol Exp Ther. 2008 Jul;326(1):135-43. Abstract | Full Text

    Song JW, Misgeld T, Kang H, Knecht SM, Cao Y, Cotman SL, Bishop DL, Lichtman JW (2008) Lysosomal activity associated with developmental axon pruning. Journal of Neuroscience 28(36) 8993-9001. Abstract Full Text

    Bishop DL, Misgeld TM, Walsh MK, Gan WB, Lichtman JW (2004) Axon branch removal at developing synapses by axosome shedding.  Neuron.  44: 651-661. Abstract

    Coggan JS, Grutzendler J, Bishop DL, Cook MR, Gan W, Heym J, Lichtman JW (2004)  Age-associated synapse elimination in mouse parasympathetic ganglia.  J Neurobiol. 60(2):214-26. 

Looking for patient care?

To schedule an appointment with a faculty member physician of IU School of Medicine, contact Indiana University Health at 888-484-3258 or use the physician finder by clicking the button below.

Find a doctor