Brian R. Calvi

Brian R. Calvi, PhD

Adjunct Professor of Medical & Molecular Genetics

Bio

Qi, S., and Calvi, B.R. (2016) Different cell cycle modifications repress apoptosis at different steps independent of developmental signaling in Drosophila. Mol. Biol. Cell, 10.1091/mbc.E16-03-0139  [article]
Paranjape, N, and Calvi, BR. (2016) The histone variant H3.3 is enriched at Drosophila amplicon origins but does not bookmark them for pre-RC assembly or activation. Genes Genomes and Genetics (G3), 10.1534/g3.116.028068.  [article]
Chen, S., Stout, J. R., Dharmaiah, S., Yde,S., Calvi,B.R. and Walczak, C.E. (2016) The Kinesin-14 HSET Contributes to Genomic Integrity in Polyploid Cell Division (Mol. Biol. Cell, in press.  [article]
Zhang B, Rotelli M, Dixon M, Calvi BR. (2015). The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ. doi: 10.1038/cdd.2015.40
Liu J, Zimmer K, Rusch DB, Paranjape N, Podicheti R, Tang H, Calvi BR. (2015). DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila. Nucleic Acids Res. gkv766
Zhang, B., Mehrotra, S., Ng, W. L., and Calvi, B.R. (2014) Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila endocycling cells. PLoS Genetics, Sept.

Hassel, C., Zhang, B., Dixon, M., and Calvi, B.R. (2014) Induction of endocycles represses apoptosis independent of differentiation and predisposes cells to genome instability. Development 141:112-123.

Calvi BR. (2014) HBO1:JADE1 at the cell cycle chromatin crossroads. Cell Cycle 2014; 13:15, 2322–2322. (News and Views).

Calvi, B.R. (2013) Making Big Cells: One size does not fit all. Proceedings of the National Academy of Sciences, 110 (24) 9621-9622 (invited commentary).

McConnell, K., Dixon, M., and Calvi, B.R. (2012) The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development, 139: 3880-3890. PMD 22951641. (featured by an "In this issue" article)
Liu, J., McConnell, K., Dixon, M. and Calvi, B.R. (2011) Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the pre-RC. Mol. Biol. Cell. 23(1): 200-212 PMID:22049023.
Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, Zhong H, Calvi BR. (2010) Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J Cell Sci. 123: 4095-4106. PMID: 21045111
Mehrotra, S., S. B. Maqbool, A. Kolpakas, K. Murnen and B.R. Calvi. (2008) Endocycling cells do not apoptose in response to DNA re-replication genotoxic stress. Genes & Development 22:3158-3171. [cover article]
Clark et al. (2007). Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450:203-218.
Calvi, BR, Byrnes, BA, and Kolpakas, AJ. (2007) Conservation of epigenetic regulation, ORC binding, and developmental timing of DNA replication origins in the genus Drosophila. Genetics 177:1291-1301.
White, A.E., Leslie, M.E., Calvi, B.R., Marzluff, W.F., and Duronio,R.J. (2007) Cyclin E/CDK2 regulation of the Drosophila melanogaster histone locus body. Molecular Biology of the Cell 18(7), 2491-2502.
Review: B.R. Calvi. (2006) Developmental Gene Amplification. In: DNA Replication and Human Disease. Cold Spring Harbor Laboratory Press. Melvin DePamphilis (ed.), pp 233-255.
May, N.R., Thomer, M., Murnen, K.F., and Calvi, B.R. 2005 The origin binding protein Double parked, and its inhibitor Geminin, increase in response to replication stress. Journ. Cell Sci. 118:4207-4217.
Bandura JL, Beall E., Bell M, Silver H, Botchan, M, and Calvi, BR (2005) humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila. Current Biology 15: 755-759.
Thomer, M., May, N.R., Aggarwal, B.D., Kwok, G., and Calvi, B.R. (2004). Drosophila double-parked is sufficient for re-replication during development and is regulated by Cyclin E / CDK2. Development 131(19): 4807-4818.
Aggarwal, B.D. and Calvi, B.R. (2004). Chromatin regulates origin activity in Drosophila follicle cells. Nature 430: 372-376.
Schwed GM, May NR, Pechersky Y, Calvi BR. (2002). Drosophila MCM6 is required for chorion gene amplification and genomic replication. Mol. Biol. of the Cell 13(2): 607-620.

Connect


bcalvi@indiana.edu 


(812)855-5450 


Biology
JH 363 1001 E. 3rd St.
Bloomington, IN 47405-7005


  

Titles & Appointments

  • Professor of Biology, College of Arts & Sciences, IU Bloomington